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For large-scale network simulations, it is often desirable to have computationally tractable,
yet in a defined sense still physiologically valid neuron models. In particular, these models
should be able to reproduce physiological measurements, ideally in a predictive sense, and
under different input regimes in which neurons may operate in vivo. Here we present an
approach to parameter estimation for a simple spiking neuron model mainly based on stan-
dard f –I curves obtained from in vitro recordings. Such recordings are routinely obtained
in standard protocols and assess a neuron’s response under a wide range of mean-input
currents. Our fitting procedure makes use of closed-form expressions for the firing rate
derived from an approximation to the adaptive exponential integrate-and-fire (AdEx) model.
The resulting fitting process is simple and about two orders of magnitude faster compared
to methods based on numerical integration of the differential equations. We probe this
method on different cell types recorded from rodent prefrontal cortex. After fitting to the
f –I current-clamp data, the model cells are tested on completely different sets of record-
ings obtained by fluctuating (“in vivo-like”) input currents. For a wide range of different
input regimes, cell types, and cortical layers, the model could predict spike times on these
test traces quite accurately within the bounds of physiological reliability, although no infor-
mation from these distinct test sets was used for model fitting. Further analyses delineated
some of the empirical factors constraining model fitting and the model’s generalization per-
formance. An even simpler adaptive LIF neuron was also examined in this context. Hence,
we have developed a “high-throughput” model fitting procedure which is simple and fast,
with good prediction performance, and which relies only on firing rate information and
standard physiological data widely and easily available.
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1. INTRODUCTION
In recent years there has been a growing interest in large-scale
neuronal network simulations (Traub et al., 1988, 2005; Whit-
tington et al., 2000; Markram, 2006; Izhikevich and Edelman,
2008; Lansner, 2009; Lundqvist et al., 2010) that capture the
cellular heterogeneity observed in real cortical tissue (Binzegger
et al., 2004; Markram et al., 2004; Wang et al., 2006; Thomson
and Lamy, 2007) and model interactions between many diverse
cortical and subcortical brain structures (Lansner et al., 2003;
Izhikevich and Edelman, 2008). The increasing desire to model
such systems at a high level of physiological realism which takes
into account the diversity and variation in neuronal cell types
is, however, in conflict with the computational feasibility and
“analytical” tractability of such models. Since in many situations
synaptic inputs to a neuron with the same kinetics can be lumped
into single “super-synapses” (e.g., Durstewitz and Gabriel, 2007),
such that the number of synaptic equations to be solved scales
linearly with the number of neurons, often the computational
burden associated with the cellular models is the more serious
bottleneck in network simulations. Moreover, if cell diversity is an

explicit issue in itself and large pools of physiological cell data are
available, even the time required for fitting cell models to all the
different cell types recorded can become a considerable temporal
constraint.

Single neuron models of very different degrees of complexity
have been developed over the last decades to study neural func-
tions. On one side, detailed multi-compartmental biophysically
meaningful models can often reproduce voltage traces of their
experimental counterparts to almost arbitrary degree (Traub et al.,
1991; De Schutter and Bower, 1994; Jaeger et al., 1997; Poirazi and
Mel, 2001; Prinz et al., 2003; Druckmann et al., 2007, 2011; Moyer
et al., 2007), and potentially provide a deep understanding of the
underlying biophysical mechanisms and functional role of the cel-
lular morphology (e.g., Mainen and Sejnowski, 1996; Poirazi and
Mel, 2001; Shu et al., 2006; Durstewitz and Gabriel, 2007). How-
ever, because of their large number of parameters, fitting such
single-cell models to electrophysiological observations is often a
slow and tedious procedure which may also run into the risk of
serious over-fitting: Different parameter configurations may result
in similarly good fits of a given “training set” (Prinz et al., 2004),

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 62 | 1

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00062/abstract
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00062/abstract
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00062/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LoreenHert�g&UID=38951
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JoachimHass&UID=21911
http://www.frontiersin.org/people/TatianaGolovko/36814
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DanielDurstewitz&UID=35226
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
mailto:loreen.hertaeg@zi-mannheim.de
mailto:daniel.durstewitz@zi-mannheim.de


Hertäg et al. Fast fitting of approximative AdEx

thus it is not clear how these models would perform on data that
was not explicitly used to optimize the parameters.

Partly for these reasons, but also for speeding up large-scale
network simulations and mathematical tractability, much simpler
models have been introduced (Durstewitz, 2003, 2009; Fourcaud-
Trocmé et al., 2003; Izhikevich, 2004; Brette and Gerstner, 2005)
as a phenomenological description of neuronal activity, often with
a focus more on the dynamical mechanisms underlying spik-
ing behavior. The leaky integrate-and-fire neuron (LIF; Lapicque,
1907; Hill, 1936) presumably presents the simplest spiking neuron
model of this kind. In order to model the upswing of an action
potential more faithfully, various extensions to the LIF neuron
were proposed, like a quadratic function (Ermentrout and Kopell,
1986; Izhikevich, 2003) or an exponential term (Fourcaud-Trocmé
et al., 2003; Brette and Gerstner, 2005) which captures the spike ini-
tiation phase. It was also shown that a second dynamical variable
may be mandatory to capture certain neuronal features like adap-
tation (Izhikevich, 2003; Richardson et al., 2003). Models like the
adaptive exponential integrate-and-fire model (AdEx; Brette and
Gerstner, 2005) or the Izhikevich (2003) model can qualitatively
reproduce a large number of spiking patterns observed in real neu-
rons (Izhikevich, 2003, 2004; Naud et al., 2008; Durstewitz, 2009).
In addition to the qualitative reproduction of real spike train fea-
tures, a few studies also dealt with systematic quantitative fitting
of model parameters on the basis of electrophysiological record-
ings (Jolivet et al., 2006, 2008; Clopath et al., 2007; Badel et al.,
2008a,b; Naud et al., 2008; Gerstner and Naud, 2009). Remark-
ably, these simple neuron models, usually trained on in vivo-like
fluctuating-current inputs, can often predict spike times from
in vitro recordings with high precision.

Here, we suggest an alternative approach that rests mainly on
firing rate information and simply uses standard f–I curves (firing
rate over step current) for fitting model parameters. Such curves
are routinely obtained by in vitro electrophysiologists and are
widely available in public data bases for many different cell types.
They cover a broad range of mean-input currents and output spike
rates a neuron may traverse in vivo. To allow for a very fast and effi-
cient fitting procedure, we derive an approximation to the AdEx
model that results in closed-form expressions for transient and
stationary firing rates. Spike-time prediction performance of the
model is then tested, however, on different spike trains obtained
from recordings with “in vivo-like” fluctuating-current injections.
Model performance is evaluated on a large variety of experimen-
tally recorded neocortical cell types, and is compared to an even
simpler adaptive LIF neuron as well as to the full AdEx. Based on
this large pool of experimental data, also some of the major empir-
ical factors constraining the model fitting process are exposed. The
result is a single-cell modeling and parameter fitting framework
that allows to efficiently build up cell models for large pools of
physiologically characterized cell types in relatively short time.
Potential shortcomings and future extensions of our approach are
discussed.

2. MATERIALS AND METHODS
2.1. TRAINING SET DATA REQUIRED FOR MODEL FITTING
The training set for the parameter tuning consists of onset and
steady-state f–I curves as well as of the sub-rheobase I –V curve.

The onset firing rate fO(I ) reflects the initial response to a step-like
current (I ) stimulus (Benda and Herz, 2003) and is defined as the
inverse of the first interspike interval (ISI ).

fO (I ) =
1

t ISI
O (I )

. (1)

However, sometimes initial spike doublets or triplets may be
observed, partly reflecting the fact that neurons in vitro (in con-
trast to in vivo) usually reside at a lower membrane voltage at
which many inward currents are in a recovered state, resulting
in higher excitability initially when a current is first injected. To
deal with this, the firing frequency adaptation curve is fitted by an
exponential decay with an effective time constant τeff (Madison
and Nicoll, 1984; Edman et al., 1987; Stocker et al., 1999; Benda
and Herz, 2003), and the onset firing rate is determined by eval-
uating this function at the time of the first spike (a procedure
which also results in a more stable estimate). The behavior of the
adapted cell, on the other hand, is given by the steady-state firing
rate f∞(I ) defined as the inverse of the average interspike interval
when the cell has reached a reasonably stationary level (i.e., an
approximately constant firing rate).

f∞ (I ) =
1〈

t ISI
∞ (I )

〉 . (2)

In practice, interspike intervals are averaged over an interval of
5 s after a transient of 10–15 s. Finally, the subthreshold behavior
of the cell is assessed from those trials where the input currents
are below the rheobase, i.e., do not cause spiking. The I –V curve
was constructed by relating these input currents to the steady-state
voltage response of the cell. For currents far below the rheobase,
I (V ) is often almost perfectly linear for rodent prefrontal cortex
neurons (present observations).

2.2. NEURON MODELS
We first briefly review the basic AdEx model in order to derive
subsequently an approximation to it that allows for setting up
closed-form expressions for the onset and steady-state f–I curves.

2.2.1. The AdEx model
The AdEx model is a two-dimensional model that mathemati-
cally describes the evolution of the membrane potential V (t ) and
an adaptation current w(t ). It is an extension of the exponential
integrate-and-fire neuron (first developed in Fourcaud-Trocmé
et al., 2003) and defined by the following system of non-linear
ordinary differential equations (Brette and Gerstner, 2005; Naud
et al., 2008):

C ·
dV

dt
= −gL · (V − EL)+ gL ·∆T · e

(V−VT
∆T

)
+ I − w (3)

τw ·
dw

dt
= a · (V − EL)− w

if V > Vup then V → Vr and w → wr = w + b (4)

The first equation of the AdEx is an extension of the LIF neuron
that models the upswing of an action potential by an exponential
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function (Fourcaud-Trocmé et al., 2003). Whenever the mem-
brane potential approaches the threshold VT, the exponential term
causes a very rapid increase of the voltage (note that VT is not a
strict spiking threshold, however, as in the classical LIF model,
but just a parameter that determines where the exponential is
“centered” on the V-axis). The downswing is replaced by a reset
condition. In the second equation, the parameter a determines
the subthreshold adaptation and b covers spike-triggered adapta-
tion. Despite the simplicity of this two equation model with just a
handful of parameters, it can reproduce a wide range of physiolog-
ical firing patterns like tonic spiking, adaptation, initial or regular
bursting, to name but a few (Naud et al., 2008). Further details of
the AdEx model are described in Brette and Gerstner (2005) and
Naud et al. (2008).

The nullclines of the ordinary differential equation (ODE) sys-
tem of the AdEx provide insights into its dynamics. They are
given by

dV

dt
= 0⇒ wV = −gL · (V − EL)+ gL ·∆T · e

(V−VT
∆T

)
+ I (5)

dw

dt
= 0⇒ ww = a · (V − EL) . (6)

There are a maximum of two fixed points (associated with the
state of resting) when I is small and zero fixed points (associ-
ated with a state of repetitive spiking) when I is sufficiently large.
The transition from resting to spiking can occur through differ-
ent types of bifurcation depending on parameter settings. For a
saddle-node bifurcation, the Jacobian matrix J of the equations (3
and 4) has two real eigenvalues, one of them being equal to zero.
This leads to the following condition at the bifurcation point V 0.

det (J ) = 0 (7)

⇒ V0 = VT +∆T · ln

(
1+

a

gL

)
. (8)

Together with equations (5 and 6), this expression can be used to
calculate the rheobase I SN,0.

wV (V0) = ww (V0) (9)

⇒ ISN,0 =
(
a + gL

)
·

[
VT − EL −∆T +∆T · ln

(
1+

a

gL

)]
.

(10)

When a= 0, one can show that the transition from the resting
state to repetitive spiking occurs always via a saddle-node bifur-
cation and the last intersection point (and with that the onset of
the f–I curve) is determined by V 0=VT (Touboul, 2008; Touboul
and Brette, 2008).

2.2.2. An approximation to the AdEx model
The exponential term in the AdEx model renders an analyti-
cal solution of the differential equations impossible. Neither the
membrane potential nor the f–I curves can be derived analytically.

The fundamental issue is the lack of knowledge about the steady-
state trajectory in the phase plane. One approach to solve the
problem is to use an approximation to the AdEx based on the idea
of separation of time scales: Under the assumption that the evo-
lution of the w-variable is much slower than the evolution of the
membrane potential V

(
τm
τw

<< 1
)

, the trajectory in the phase

plane (Gerstner and Kistler, 2002; Naud et al., 2008)

• is nearly horizontal if it is far away from the V-nullcline wV,
• follows the left branch of that nullcline at a vertical distance

D(V ) as soon as it approaches the V-nullcline wV.

A slow adaptation is a reasonable assumption for many real
neurons since the membrane time constant is often one to two
orders of magnitude lower than the spike-rate adaptation time
constant (Benda and Herz, 2003; Thomson and Lamy, 2007).

To obtain the steady-state firing rate without computing the
whole transient dynamics, we require w(t ) to be constant in time

dw

dt
=

dw

dV

dV

dt
= 0 (11)

except within a well-defined vicinity of the left branch of the
V-nullcline wV. As dV /dt 6= 0 away from wV, it follows that
dw/dV = 0 in this case. Hence, the trajectory in the (V,w)-phase
plane is exactly horizontal. In the second regime characterized by
dw/dt 6= 0, the trajectory has to follow a curve defined by a ver-
tical distance D(V ) up to its minimum at V =VT. Hence, w(V )
is defined piecewise and we obtain a differential equation for the
membrane potential V that can be solved section by section. Fur-
thermore, the reset value wr and thus the value w(V up) for the
onset and the steady state are known from the start.

To calculate w in the vicinity of wV, the vertical distance D(V )
has to be specified. Following Gerstner and Kistler (2002) and
Naud et al. (2008), we make the ansatz

wtraj = wV −
1

τw
· D (V ) . (12)

Inserting (12) into equation (4) and using the additional
assumption a= 0

dwtraj

dt
= −

wtraj

τw
= −

wV

τw
+

D (V )

τ2
w

. (13)

Using (3) and differentiating w traj [equations (12) and (5)] with
respect to V, dw traj/dt can also be obtained as

dwtraj

dt
=

dwtraj

dV

dV

dt
=

− 1

τmτw
+

e

(V−VT
∆T

)
τmτw

−
D′(V )

Cτ2
w

D(V ).

(14)

where τm=C/gL is the membrane time constant. In obtaining
this expression we also used the relationship C ·dV /dt =D(V )/τw
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that follows from inserting (5) into (12). Setting (13)= (14) and
solving for D(V ) one obtains the approximation

D (V ) ≈
C

gL
·

(
I + gL ·∆T · e

(V−VT
∆T

)
− gL · (V − EL)

)
= τm·wV

(15)

under the assumptions that τ−2
w is sufficiently small such that terms

containing τ−2
w can be neglected, and (τw · τm)−1

· e
V−VT

∆T ≈ 0.
This latter assumption is valid provided that (τw·τm) is sufficiently
large compared to the exponential term which is ≤1 for all values
V ≤VT. Inserting (15) into (12), w traj is approximately given by

wtraj ≈

(
1−

τm

τw

)
· wV (16)

and we can therefore write

dw

dt
=

dw

dV

dV

dt
=

(
1−

τm

τw

)
dwV

dV

dV

dt
. (17)

Defining two functions el and er by

el = wV −
D (V )

τw
=

(
1−

τm

τw

)
wV (18)

er = wV +
D (V )

τw
=

(
1+

τm

τw

)
wV , (19)

the second regime is confined within the band [el, er] for V ≤VT.
Simplified AdEx model: Summing up the results from the pre-

vious section, the simplified AdEx model (simpAdEx) is defined
as follows:

C ·
dV

dt
= −gL ·(V − EL)+gL ·∆T ·e

(V−VT
∆T

)
+s ·I−w = wV −w

(20)

dw

dt
=

{
0 for D < τw · |w − wV |

Θ (VT − V ) ·
[

1− τm
τw

]
dwV
dV

dV
dt otherwise

(21)

if V > Vup then V → Vr and w → wr = w + b

if w =

(
1+

τm

τw

)
wV then w →

(
1−

τm

τw

)
wV

where Θ denotes the Heaviside function and s corresponds to a
scaling factor set to 1 for the fitting process (see Section 3.2 for
further explanation). The first if-condition describes the down-
swing. It is equivalent to the reset defined in the AdEx. The second
if-condition defines a vertical jump from the envelope er to el as
soon as the trajectory reaches the curve er. This constraint is nec-
essary because of a singularity in the integral that would appear
whenever the horizontal trajectory crosses the V-nullcline. Thus,

FIGURE 1 | Comparison of phase planes of the simpAdEx for sharp (A)
and broad (B) reset. If the steady-state reset point [(Vr, wr); green cross] is
below the V-nullcline (red curve) the spiking pattern corresponds to a sharp
reset (no undershoot), otherwise it is broad (associated with an
after-hyperpolarizing current or undershoot). The trajectory is given in blue
with the blue filled square representing the initial point and the open blue
squares indicating the reset points. The lower panels show the voltage
traces corresponding to these trajectories. The dashed vertical line marks
the threshold VT beyond which the trajectory runs strictly parallel to the
abscissa. The two gray dashed lines present the functions el and er

described in the text. Note that the distances of the envelopes to the
V-nullcline have been enlarged for clarity.

the trajectory is horizontal unless in close proximity to the left
branch of the V-nullcline, where it follows the branch at a vertical
distance defined by D. We can now distinguish between two cases
in the steady state:

1. The steady-state reset value wr is below the V-nullcine wV and
the trajectory approaches the left branch from the left. As soon
as the horizontal trajectory crosses the curve el, it follows the
curve up to the point V =VT. From there on it stays horizontal
at wV(VT)−D(VT)/τw. The corresponding voltage trace shows
a sharp reset (Figure 1A).

2. The steady-state reset value wr is above the V-nullcline wV and
the trajectory approaches the left branch from the right. As soon
as the horizontal trajectory crosses the curve er, it jumps verti-
cally to the curve el, where it follows el up to the point V =VT.
From there on it stays horizontal at wV(VT)−D(VT)/τw. The
corresponding voltage trace shows a broad reset (Figure 1B).

The fixed points of the system are the intersection points of the
V-nullcline with the horizontal w = 0. Figure 2 shows the behavior
of the V-nullcline as well as the functions el and er with increas-
ing input current I in the phase plane. The curves are shifted
upwards and for I less than or equal to the rheobase, they have
at least one intersection point. In equations (13 and 14), the sub-
threshold adaptation defined by a was set to zero such that the
intersection points of el and er coincide with the fixed points of
the system. Hence, it is ensured that the sub-rheobase I –V curve
is consistently defined by equations (20 and 21).

I (V ) = gL · (V − EL)− gL ·∆T · e
V−VT

∆T ∀ V ≤ VT . (22)

The system has a maximum of two fixed points that coalesce
and finally disappear via a saddle-node bifurcation at VT since
a= 0 [cf. equation (10)].
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FIGURE 2 | Comparison of phase planes of the simpAdEx for I less than
(A), equal (B) and greater than (C) the rheobase. The V-nullcline (in red)
and the curves el and er (gray dashed lines) are shifted upwards with
increasing input current. For I less than or equal the rheobase, the three
curves have a maximum of two shared intersection points (one stable node
given by the filled green circle and one unstable node represented by an
open green circle) which coincide at the saddle point V =VT. The trajectory
is given in blue with the blue filled square representing the initial point and
the open blue squares indicating the reset points. The steady-state
trajectory starts at the green cross and passes through three sections: It
runs horizontal up to the intersection point with the envelope el (dark cyan
line) where it follows el up to its minimum at VT (cyan line). The third part of
the trajectory is again horizontal (light cyan line). Note that the distances of
the curves el and er to the V-nullcline have been enlarged for clarity.

Due to the piecewise defined w(V ), we can now derive a closed-
form expression for the onset t ISI

O (I ) and steady-state interspike
interval t ISI

∞ (I ). Based on equation (20) and using separation of
variables, the solution is given in terms of integrals of the general
form:

t ISI
=

∫ V (te )

V (ta)

C · dV

wV (V )− w (V )
. (23)

Specifically, the steady-state interspike interval t ISI
∞ (I ) can be

computed as the sum of three integrals over the three different

regimes in the phase plane (Figure 2C):

t ISI
∞,1 =

∫ Vs

Vr

C · dV

wV (V )− wr
(24)

t ISI
∞,2 =

∫ VT

Vs

C · τw · dV

D (V )
(25)

t ISI
∞,3 =

∫ Vup

VT

C · dV

wV (V )− wr + b

f∞ =
[
t ISI
∞,1 + t ISI

∞,2 + t ISI
∞,3

]−1
. (26)

where Vs denotes the intersection point of the horizontal at wr

with the curve el when the steady-state reset point is below the V-
nullcline, and with er otherwise. This relationship holds only for
b > 0, while for b= 0 the steady-state interspike interval is given
by t ISI
∞ = t ISI

∞,1 with Vs=V up. The onset f–I curve is given by

fO =
[
t ISI
O

]−1
with t ISI

O =

∫ Vup

Vr

C · dV

wV (V )− b
. (27)

Equation (27) is only valid for b≤wV(VT)−D(VT)/τw. Oth-
erwise t ISI

O has also to be split up into three integrals, as for the
steady state, since the trajectory would reach the vicinity of the
V-nullcline. Note that equations (24–27) still need to be solved
numerically since analytical expressions for the integrals are not
available. This, however, can be done through fast algorithms like
the adaptive Lobatto quadrature (Matlab function “quadl”) which
evaluates the integral only at a few discrete points. The resulting
fitting procedure is about 10–100 times faster than explicitly sim-
ulating whole voltage traces up to where a steady-state in the firing
rate is reached (see Table 2; simulating the full (V,w)-trajectory,
however, is about as time-consuming as for the full AdEx). The
mathematical derivations above were also checked numerically
(i.e., by simulation of the full system).

Despite these simplifications, the simpAdEx can reproduce
many of the spiking patterns observed in real neurons and as
seen in the full AdEx, including tonic spiking, adaptation, initial
bursting, or regular bursting (Figures 3A–C). In addition to the
closed-form expressions for the onset and steady-state firing rate,
one can also easily find similar expressions for the latency or the
number of spikes in response to a step current.

2.2.3. The adaptive LIF model
As an alternative to the simpAdEx model above, we also inves-
tigated an even simpler model which incorporates subthreshold
adaptation (a 6= 0) but allows for an analytical solution for the f–I
curves, namely the adaptive LIF neuron defined by

C ·
dV

dt
= −gL · (V − EL)+ I − w (28)

τw ·
dw

dt
= a · (V − EL)− w (29)

if V > VT then V → Vr and w → wr = w + b
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FIGURE 3 | Phase plane representations and corresponding spiking
patterns upon constant current steps for the approximation to the AdEx
(A–C) and the adaptive LIF neuron (D,E). Adaptation (A,D), initial burst

(B,E), and regular bursting (C). Red curve: V-nullcline, blue curve: trajectory.
For the adaptive LIF model, the w-nullcline is shown in green and the dashed
vertical marks the threshold VT.

This model is identical to the AdEx except it lacks the exponen-
tial term describing the action potential upswing. For b= 0, it is
well described and discussed in Izhikevitch (2001) and Richardson
et al. (2003). The nullclines are given by

dV

dt
= 0⇒ wV = −gL · (V − EL)+ I (30)

dw

dt
= 0⇒ ww = a · (V − EL) . (31)

The system has either no fixed points when the nullclines run
parallel (I 6= 0 and a=−gL), infinitely many fixed points when the
nullclines lie on top of each other (I = 0 and a=−gL), or exactly
one fixed point whose eigenvalues are given by

λ1,2 =
1

2

−( 1

τm
+

1

τw

)
±

√(
1

τm
+

1

τw

)2

−4 ·
a + gL

C · τw


=

1

2

[
−m ±

√
∆
]

, (32)

and which is stable for

a ≥ −gL . (33)

The transition to repetitive spiking can be obtained by adjust-
ing the threshold parameter VT which defines the reset condition.
Increasing I shifts the intersection point to the right. The rheobase
is then defined by the intersection point at the threshold parame-
ter VT: I 0= (gL+ a)·(VT− EL). The system has three dynamical
regimes depending on its eigenvalues λ1 and λ2, and the general
solution is given by

V (t ) =


C1 · eλ1·t + C2 · eλ2·t +

s
n if ∆ > 0

(C1 + C2 · t ) · e
−

m
2 ·t +

s
n if ∆ = 0

e−
m
2 ·t · [C1 · cos(βt )+ if ∆ < 0 with β =

√
−∆
2

C2 · sin(βt )] + s
n

(34)

where s= (τw·C)−1
·[I + (a+ gL)·EL], n = a+ gL/τw ·C , and the

parameters C1 and C2 have to be determined from boundary con-
ditions. For the onset and steady state, these boundary conditions
can be written as(

V (0) , V̇ (0)
)

=


(
EL , I

C

)
for the latency (lat)(

Vr , V̇ lat (tl)−
gL
C (Vr − VT )− b

C

)
for the initial state(

Vr , 1
C

[
−gL · (Vr − EL)+ I − wr

])
for the steady state

(35)
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In the following, we derive analytical solutions for the onset
and steady-state firing rates for the first regime defined by ∆ > 0
as an example. Analog expressions for the cases ∆= 0 and ∆ < 0,
respectively, can be directly deduced. In order to calculate the onset
firing rate, we first have to consider the latency defined as the time
delay up to the first spiking time. By using the boundary conditions
for the latency and solving the resulting system of equations, we
obtain the following equation for the membrane potential V lat(t ):

Vlat (t ) =

[
I

C
− E∗L · λ2

]
·

eλ1·t − eλ2·t

λ1 − λ2
+ E∗L · e

λ2·t +
s

n
. (36)

with E∗L = EL−s/n. The latency time tl can be calculated by taking
V lat(tl)=VT:

V ∗T =

[
I

C
− E∗L · λ2

]
·

eλ1·tl − eλ2·tl

λ1 − λ2
+ E∗L · e

λ2·tl . (37)

where V ∗T is given by V ∗T = VT − s/n. On the basis of the solu-
tion (36), V̇ lat(tl) can be derived. A closed-form expression for
the onset as well as the steady-state interspike interval (in the
following denoted by tISI, with t ISI

= t ISI
∞ and t ISI

= t ISI
O , respec-

tively), can be derived with the boundary condition V (0)=Vr and
V (tISI)=VT:

V ∗T = L
(
Vr , V̇ (0)

)
·

[
eλ1·t ISI

− eλ2·t ISI
]
+ V ∗r · e

λ2·t ISI
(38)

where V ∗r = Vr−s/n, V ∗T = VT−s/n and L
(
Vr , V̇ (0)

)
denotes

LO for the initial regime and L∞ for the steady state, respectively.
In the case of the initial state, LO is given by

LO =
1

λ1 − λ2
·

[
V̇ lat (tl)−

gL

C
(Vr − VT )−

b

C
− λ2 · V

∗
r

]
.

(39)

The calculation of the steady-state firing rate necessitates a further
condition:

w
(
t ISI
∞

)
= wr − b = −gL (VT − EL)+ I − C ·

dV

dt

∣∣t ISI
∞ . (40)

Using this, L∞ is a linear function of wr:

L∞ =
1

λ1 − λ2
·

[
1

C
(wV (Vr )− wr )− λ2 · V

∗
r

]
. (41)

wr in turn is uniquely given by (40) with

dV

dt

∣∣t ISI
∞ = L∞ ·

[
λ1 · e

λ1·t ISI
∞ − λ2 · e

λ2·t ISI
∞

]
+ λ2 · V

∗
r · e

λ2·t ISI
∞ .

(42)

Equations (38) and (39) determine the initial interspike interval
t ISI
O and equations (38), (41), and (42) can be combined into one

equation which gives a closed-form expression for the steady-state
interspike interval. The onset and the steady-state firing rates are
then directly given by the inverse of these expressions.

The model cannot reproduce as many spiking patterns as the
AdEx, but shows notable features like tonic spiking, adaptation,
transient spiking, or delayed acceleration (Figures 3D,E). Based
on this formalism, piecewise defined linear models may increase
the variety of spiking patterns while remaining mathematically
tractable.

2.3. MODEL FITTING METHOD
Estimating initial parameter values: Most of the parameters of the
model are subject to a fitting procedure. The only exceptions are
the capacitance C and the upper limit of the membrane poten-
tial V up which are set by explicit constraints. C is fixed by the
relation C = gL·τm, where the membrane time constant τm is
directly obtained from subthreshold recordings. Specifically, τm is
extracted from exponential fits to the initial part (∼50–100 ms) of
voltage traces after applying small hyper- or depolarizing current
steps. A single exponential term fitted the decay (rise) reasonably
well for our recordings. V up, on the other hand, does not signif-
icantly affect the model dynamics and was coupled to the fitted
slope factor ∆T through V up= 10·∆T− 40 to avoid numerical
problems.

Where possible, initial values were taken directly from the data:
EL and gL are extracted as the offset and slope, respectively, of the
linear fit to the sub-rheobase I –V curve in its approximately lin-
ear range. Furthermore, an estimate of the threshold VT can be
derived from the I –V curve of the simpAdEx model. As the cell
does not spike and thus w = 0, the current I that results in a given
voltage V can be calculated by searching for the zero crossings of
the V-nullcline wv. From equation (22), it follows that

I0 = gL · (VT − EL)− gL ·∆T . (43)

Equation (43) suggests that a reasonable estimate for VT is given
by the voltage at the rheobase current I 0. A log-function is fitted
to the empirical f–I curve for estimating the rheobase, and the
corresponding value for V is used as initial estimate for VT.

The remaining parameters ∆T, τw, Vr, and b do not have
a clearly defined physiological equivalent (although ∆T may be
mainly related to the fast Na+ channel activation). Based on expe-
rience, the slope factor ∆T is usually around 1–3 mV (Fourcaud-
Trocmé et al., 2003; Clopath et al., 2007; Badel et al., 2008a; Naud
et al., 2008), so 2 mV was used as an initial estimate. A rough esti-
mate of the reset value Vr was taken directly from the voltage traces
upon step currents. For b, we defined a lower bound by the inverse
of the time constant τeff of the adaptation, as small values of b lead
to a very slow adaptation.

The fitting procedure: All software used for parameter tun-
ing and model validation was written in Matlab and C and will
be made publicly available at www.bccn-heidelberg-mannheim.de.
Since closed-form expressions are available for the final interspike
intervals, it is no longer necessary to numerically integrate the
full two-dimensional (V,w)-trajectory up to the point where a
steady state in spiking activity has been reached. In addition, equa-
tions (24–27) allow for faster numerical schemes that evaluate the
integrals only at specific points, like adaptive Lobatto quadrature
(Press et al., 2007) as provided by the built-in Matlab function
“quadl.” Our fitting algorithm has three consecutive steps. Dur-
ing the first and the second step, the parameters are first roughly
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tuned by fitting only three points of the I –V curve and the f–I
curves, respectively, in order to refine the initial estimates. More
precisely, uniformly distributed pseudorandom numbers on an
interval defined by ±20% of the initial parameter estimates are
used to fit two data points near the rheobase of the I –V curve
and one point far away from it, in order to capture roughly the
subthreshold behavior and the onset of the f–I curves. During
this optimization step, only the parameters gL, EL, ∆T, and VT

are tuned. The membrane capacitance C is then recalculated by
C = τm·gL since τm is assumed to be fixed. Next, the slopes of the
simulated onset and steady-state f–I curves are adjusted simul-
taneously by using three data points (the rheobase, one close to
the onset and the last defined point) of the real f–I curves. In
this process, the parameters b, τw, and Vr are optimized and the
other parameters are held fixed because the slope is mainly deter-
mined by these three. Since we do not have initial values for the
first two parameters, several combinations of systematically cho-
sen initial values for τw and b are tested. Subsequently, the fitting
errors are compared and the pair (τw, b) corresponding to the
smallest error is taken for the final fitting step. In the final step,
all data points of the three curves are fitted simultaneously, allow-
ing all parameters except ∆T, V up, gL, and C to be optimized. We
emphasize that this whole fitting procedure is completely autom-
atized and does not require any parameter setting/exploration or
pre-inspection of data by the user: It requires nothing more than
provision of the training data, from which the routine extracts
initial estimates as described above, and then automatically cycles
through all the steps above until a fixed convergence criterion is
reached.

The optimization function is given by

q = w1 ·
∑(

f∞,target − f∞,model
)2

+ w2 ·
∑(

fO,target − fO,model
)2
+ w3 ·

∑(
Itarget − Imodel

)2

(44)

The weights w = (w1,w2,w3) may be chosen to balance the rel-
ative importance of the three contributions. We set w = (5,1,4)
as from our observations the steady-state f–I curve appeared to
be most important for the spiking behavior. The whole pro-
cedure is repeated at least five times starting from different
initial estimates. In all cases this took less than 15 min on a
single 2.4 GHz Intel(R) Xeon(R) CPU E5620 (for comparison
with the full AdEx, see Table 2). The optimized parameter con-
figuration with the lowest overall fitting error is then used to
predict the spike times in test sets consisting of voltage traces
upon fluctuating-current input. Generally, we found that dif-
ferent initial estimates resulted in similar parameter configura-
tions.

2.4. PERFORMANCE MEASURE
We used two previously introduced performance measures to eval-
uate the prediction quality of our model more formally: The
coincidence rate Γ and the Victor–Purpura measure DVP(q). The
coincidence rate (Kistler et al., 1997; Gerstner and Kistler, 2002;
Jolivet et al., 2004, 2008) basically describes the percentage of

correctly predicted spike times with precision ∆, taking stochastic
coincidences into account

Γ =
Ncoinc − 〈Ncoinc〉

0.5 (Nmodel + Ndata)

1

Nnorm
. (45)

where N coinc is the number of coincidences within ±∆, and
〈N coinc〉= 2ν∆N data is the expected number of coincidences gen-
erated by a homogeneous Poisson process with rateν. The variables
N model and N data denote the number of spikes in the spike trains
generated by the model and the real neuron, respectively, and
N norm= 1− 2ν∆ is a normalization factor (Kistler et al., 1997;
Gerstner and Kistler, 2002; Jolivet et al., 2004, 2008).

The Victor–Purpura measure (Victor and Purpura, 1996) is a
metric based on spike times or interspike intervals and can be
understood as a cost function that specifies how much effort is
needed to transfer one spike train into the other. The measure
depends on a cost parameter q that describes the relative sensi-
tivity of the metric to precise timing of spikes. The algorithm to
calculate the measure is best described by the elementary steps that
are allowed: adding or deleting a spike has the cost of 1 and shift-
ing a spike by the amount ∆t is equivalent to the cost of q|∆t |.
Following Kreiman et al. (2000), we normalize the Victor–Purpura
metric by the total number of spikes in both spike trains to ensure
that the value is always between 0 and 1. To facilitate comparability
with the coincidence rate, we rearrange the measure such that a
value of 0 is equivalent to no similarity and 1 indicates the best
scenario:

VP
(
q
)
= 1−

DVP
(
q
)

Nmodel + Ndata
. (46)

Both these measures were also used to determine the intrinsic
reliability of experimentally recorded cells, i.e., the coincidence of
spikes between different identical repetitions of the same stimulus
injected into the same neuron. We report the intrinsic reliability
as the average over all pairs of repetitions.

2.5. EXPERIMENTAL PREPARATION AND ELECTROPHYSIOLOGICAL
RECORDINGS

Coronal cortical slices (250–300 µm) containing the prelim-
bic/intralimbic region of the medial PFC were prepared from the
brains of 44–55 days old BL/6 mice and Sprague Dawley rats fol-
lowing decapitation, in accordance with German animal welfare
laws and institutional regulations. The brains were rapidly dis-
sected and brain slices were prepared in cold (4˚C), oxygenated
(carbogen, 95% O2–5% CO2) ACSF containing (in mM): 124
NaCl,3 KCl,1.8 MgSO4, 1.6 CaCl2, 10 Glucose,1.25 NaH2PO4, and
26 NaHCO3. Slices were then transferred to a chamber contain-
ing ACSF at room temperature. Submerged slices in the recording
chamber were continuously perfused with oxygenated ACSF. Neu-
rons were identified based on their somatic morphology and
the orientation of their dendrites (visualized using differential
interference contrast microscopy). Pyramidal cells had triangular
shaped somas and prominent apical dendrites (Mason et al., 1991;
Schröder and Luhmann, 1997), bitufted cells elongated somas with
one or two prominent, vertically orientated dendrites (Reyes et al.,
1998; Rozov et al., 2001), and fast-spiking cells had round cell
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bodies with multipolar dendrites (Connors and Gutnick, 1990).
Neuronal identity was further confirmed by their characteristic
action potential firing patterns in response to stepped depolariza-
tion (Connors et al., 1982; Mason and Larkman, 1990; Chagnac-
Amitai et al., 2004). Thick-walled borosilicate pipettes (6–8 MΩ

tip resistance) were used for the whole cell patch-clamp record-
ings and were filled with (in mM): 105 K-gluconate, 30 KCl, 10
HEPES, 4 MgATP, 0.3 GTP, and 10 Phosphocreatine. Recordings
were made using an Axoclamp 2B amplifier (Axon Instruments,
Union City, CA, USA). Data was filtered at 2 kHz and digitized
at 10–20 kHz with an ITC-16 (InstruTech, Port Washington, NY,
USA) and analyzed offline using customized Matlab analysis rou-
tines (MathWorks, MA, USA). All recordings were performed at
33–36˚C. Series resistance was not compensated in most of the
recordings,and no adjustments to membrane potential were made.
In all experiments 50 µM Picrotoxin (GABAA receptor blocker),
50 µM DNQX (AMPA receptor antagonist), and 50 µM dl-2-
amino-5-phosphonovaleric acid (NMDA receptor blocker) was
added to the recording solution in order to minimize synaptic
noise.

For the recording of f–I curves and sub-rheobase I –V curves,
current steps from −200 up to 600 pA were applied for 25 s each.
The depolarizing inputs were preceded by a brief hyperpolarizing
current step of −50 pA for monitoring input resistance stability.
Interleaved with these constant current protocols, fluctuating-
current inputs were applied to the cell for 25 s if the mean cur-
rent was greater than or equal the rheobase and 45 s otherwise
in order to generate a reasonable number of spikes. The step-
and fluctuating-current parts of the full recording protocol were
repeated about 2–8 times in total (with each repeat identical;
each part took about 4–6 min, separated by ∼30 s), to account
for physiological variability and to obtain estimates of cellular
reliability. A total of ∼100 prefrontal cortex cells were recorded
using this type of protocol. Fluctuating currents were constructed
from two Poisson spike trains mimicking 100 excitatory input
neurons each firing at 10 Hz and 200 inhibitory neurons each at
20 Hz, respectively. The spike trains were filtered by an artificial
synapse modeled by double exponential functions with the kinet-
ics of AMPA, GABAA, and NMDA currents. The parameters for
the synaptic kinetics (τon= [0.5, 1, 2.5] ms and τoff [2, 6, 95] ms for
AMPA, GABAA, and NMDA, respectively), and the non-linearity
of the NMDA current (see Jahr and Stevens, 1990), were taken
from Durstewitz (2003). The mean and SD of the total current
input were controlled by changing synaptic weights, i.e., by the
effect each spike has on the three different current components.
Model parameters were fitted to the f–I and sub-rheobase I –V
curves, and prediction performance was evaluated on the block
of fluctuating current sets immediately following the respective
training set.

3. RESULTS
We investigated a large number of data sets (N ∼ 100 recorded pre-
frontal cortex neurons) in order to characterize the potential of our
simplified AdEx model (the AdEx model is originally developed
in Brette and Gerstner, 2005). This was done by fitting parameters
of the model on onset and steady-state f–I and sub-rheobase I –V
curves, and subsequently evaluating the prediction performance

on test sets consisting of in vivo-like fluctuating input currents
(Destexhe et al., 2001, 2003).

The onset f–I curve fO(I ) captures the initial response of the
non-adapted cell, while the steady-state f–I curve f∞(I ) reflects
the behavior of the adapted cell for a given level I of mean input.
The sub-rheobase I –V curve in addition captures subthreshold
and passive response properties of the cell. This training set is eas-
ily obtained by standard current-clamp protocols with hyper- and
depolarizing constant current steps (see Materials and Methods)
and thus widely available (Benda and Herz, 2003). The fitting pro-
cedure is based on closed-form expressions for the f–I curves we
had derived from an approximation to the AdEx model (see Mate-
rials and Methods), and therefore does not require to simulate the
full underlying system of differential equations up to the point
where a steady-state in spiking activity has been reached. It also
allows for faster numerical schemes. In consequence, the result-
ing fitting scheme is about one to two orders of magnitude faster
than methods that require numerical integration of the underlying
system of differential equations (see Table 2 and below).

Fluctuating inputs mimicking synaptic bombardment (Des-
texhe and Paré, 1999; Destexhe et al., 2001, 2003) had been used
previously for the purpose of model fitting (Jolivet et al., 2006,
2008; Clopath et al., 2007; Badel et al., 2008a,b; Naud et al., 2008;
Gerstner and Naud, 2009). In our case, however, these traces
will be used purely or mainly for checking the prediction per-
formance of the model, i.e., either no information at all (Section
3.1) or only total spike count (but not spike time) information
(Section 3.2) from these data will be harvested in model fitting.
In vivo-like fluctuating-current test sets were probed within a
wide range of SD, from 20 to 550 pA. For the preparation used
here (adult rodent PFC), however, only the lower portion of this
spectrum (SD of ∼35–50 pA) produced voltage fluctuations in
the recorded cells (σV≤ 6 mV, range≤ 30 mV) that were most
consistent with in vivo data [σV ∼ 1–5 mV, range∼ 10–20 mV, dur-
ing awake activity or up-states as extracted from (Steriade et al.,
2001; Timofeev et al., 2001; intracellular recordings); and (London
et al., 2010; patch-recordings)]. To further verify these num-
bers, we also analyzed in vivo patch-clamp recordings from the
(anesthetized) adult rodent PFC (kindly provided by Dr. Thomas
Hahn, Central Institute of Mental Health and BCCN Heidelberg-
Mannheim). The voltage SD during up-states ranged from ∼2 to
6 mV (<σV>∼ 3.5 mV; voltage range∼ 10–20 mV) in these data,
in agreement with the values we have extracted from the liter-
ature. In contrast, fluctuating-current injections into adult PFC
cells recorded in vitro with σ= 100 pA already resulted in volt-
age fluctuations (σV ∼ 11.9 mV, range∼ 45–50 mV) that clearly
exceeded the range observed in vivo. Thus, fluctuating test stimuli
with σ= 35–50 pA were deemed to be the ones most relevant to
the in vivo setting, and hence most of the subsequent discussion
will focus on this range.

3.1. PERFORMANCE OF THE simpAdEx ON ELECTROPHYSIOLOGICALLY
RECORDED PYRAMIDAL CELLS AND INTERNEURONS

Pyramidal cell (N ∼ 90) and interneuronal (N ∼ 10) recordings
in vitro were obtained from layers 3, 5, and 6 of the adult rat or mice
medial prefrontal cortex (see Materials and Methods). Figure 4
shows a few examples of training set fits and corresponding test set
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FIGURE 4 |Training set fits and example test set performance for (A) a
bitufted interneuron (<Γmod/Γcell> = 1.2), (B) a layer-3 pyramidal cell
(<Γmod/Γcell> = 0.78) and (C) a layer-5 pyramidal neuron (<Γmod/Γcell> = 0.9)
from the rodent prefrontal cortex. The training set consisting of the onset
and steady-state f –I curves as well as the sub-rheobase I–V curve (left panel),
and the test set (right panel) consisting of a voltage trace upon a fluctuating
input current are given in black [(A) rheobase≈ 50 pA, σ=35 pA, µ=15 pA;

(B) rheobase≈80 pA, σ=50 pA, µ=50 pA; (C) rheobase≈50 pA, σ= 100 pA,
µ=25 pA]. The corresponding fits by the simpAdEx are given in red
(steady-state f-I curve) and blue (onset f –I curve). The spike trains (top, right
panel) illustrate the variability in the recorded cell responses to identical
repetitions of the same fluctuating-current input (black and gray), together
with the spiking responses of the model (red). Insets show zoom-ins on the
subthreshold regime (t-interval: 500 ms, V-interval: 30 mV).
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FIGURE 5 | Summary statistics for model performance on test sets from
prefrontal cortical cells recorded in vitro. (A) Performance measure
averaged across all test sets (σ∈ {20,35,50} pA; in addition
σ∈ {100,150,200,250} pA for rat layer-5 cells) for different species, cell types
and layers calculated by the normalized coincidence rate <Γmod/Γcell> for a
window ∆= 20 ms without (black) and with (gray) a scaling factor that
compensates for potential firing rate differences. The number of test sets
investigated is given in parentheses. (B) Performance measure as a function
of the mean input; points are averages across the two SD σ∈ {35,50} pA [taken

from the rat data shown in (A)] without (black) and with (gray) scaling factor.
Dashed vertical: average rheobase of the cells shown. (C) Averaged prediction
performance for layer-5 pyramidal cells from rats (N =14 for σ= 50 pA; N =6
for σ > 50 pA) as a function of the SD (mean current µ≤25 pA) without (black)
and with (gray) optimal scaling factor. All performances are given relative to
the intrinsic reliabilities Γcell of the cells. Error bars=SEM. M_L5, mouse
layer-5 pyramidal cell; M_L3, mouse layer-3 pyramidal cell; M_L6, mouse
layer-6 pyramidal cell; M_FS, mouse fast-spiking interneuron; R_L5, rat layer-5
pyramidal cell; R_L3, rat layer-3 pyramidal cell; R_BT, rat bitufted interneuron.

performances of the model on data from one bitufted interneuron
(Figure 4A) and from pyramidal neurons in layers 3 (Figure 4B)
and 5 (Figure 4C). The empirical f–I curves usually cover the
whole range of spike rates up to the point of depolarization block
(i.e., where spike-generating Na+ channels cannot recover from
inactivation anymore) and were fitted very well in each case. Com-
parisons of the model and real cell test set voltage traces upon
fluctuating currents also revealed an often remarkably high rate
of precise spike coincidences (as in the examples shown), consid-
ering that these fluctuating test sets are very different from the
data that had been used for adjusting the model. Even though
the model spike reset points are often below the experimentally
measured ones (see also Clopath et al., 2007; Badel et al., 2008b),
the model V-traces are almost always able to make up with the
original data before the next spike is reached. A missed or addi-
tional spike only leads to very transient deviations and has no
longer-term effects. Thus, in general, spike times within the empir-
ically recorded traces are predicted quite accurately. Although not
a major objective of the present study, for the pyramidal cells also
the correlations between model and measured subthreshold volt-
age traces (with spikes cut out in ±10 ms windows) were quite
high, with a mean of 0.76 (n= 30 from 3 cells) when normalized
to the intrinsic reliability of the empirical cells (i.e., the membrane
potential correlations between different repetitions of the same
trace). For fast-spiking interneurons these fits were substantially
worse (normalized <r>= 0.36, n= 31 from 3 cells) for reasons
discussed below (Section 4.3).

Figure 5A (black bars) summarizes all spike prediction results
for different layers and cell types in rats and mice, across mean-
input currents both above and below rheobase, and across a range
of different SD (σ∈ {20,35,50} pA; for rat L5 cells data contain
in addition test sets with σ∈ {100,150,200,250} pA). The perfor-
mance measures were normalized by the intrinsic reliabilities of
the cells as in previous studies (Jolivet et al., 2006, 2008; Clopath
et al., 2007; Badel et al., 2008a,b; Naud et al., 2008; Gerstner and
Naud, 2009), since in general the agreement between different
spike train repetitions upon the same input from a real cell sets an
upper bound on the prediction performance we may expect from a
model. Only cells with intrinsic reliability≥0.2 were considered in
the present analysis (cf. Jolivet et al., 2008). When averaging across
all the group means in Figure 5A, the coincidence rate Γ for a coin-
cidence window ∆= 20 ms was about 0.74, and 0.64 for ∆= 10 ms
[VP(q= 4/<ISI>)= 0.82; VP(q= 0.125 ms−1)= 0.67].

Figure 5B shows how the model performance depends on the
mean input µ averaged over two different SD σ∈ {35,50} pA: It
seems that prediction performance is slightly better for lower µ

close to or less than the rheobase. Thus, one may conclude that
above the rheobase further mechanisms play a role that are not
captured by the model that well. In particular, fluctuating cur-
rents with a large mean µ might contain more current events
that drive the real cell close to or beyond the depolarization block.
Hence, one explanation of the decreasing performance with higher
µ might be that the model lacks an explicit Na+-channel inacti-
vation mechanism. In vivo, however, spiking rates of prefrontal

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 62 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Hertäg et al. Fast fitting of approximative AdEx

Table 1 | Statistics of parameter estimates of the simpAdEx for

different PFC layer 3 (L3) and 5 (L5) pyramidal cells (PC) and

fast-spiking (FS) interneurons.

Parameter L3 PC L5 PC FS

C (pF) 123.71 (43.99) 213.94 (94.47) 54.72

gL (nS) 7.16 (2.41) 5.58 (1.71) 5.08

EL (mV) −71.48 (6.71) −71.42 (4.61) −67.30

∆T (mV) 4.51 (0.94) 2.80 (0.94) 2.93

τw (ms) 120.98 (56.37) 218.07 (125.69) 22.23

b (pA) 19.82 (14.51) 19.65 (18.79) 2.04

Vr (mV) −84.23 (14.07) −64.35 (5.15) −100.03

VT (mV) −55.38 (10.90) −61.00 (10.90) −53.97

Values given as means (SD).

neurons are usually quite low even upon stimulus presentation
(<10–20 Hz; Margrie et al., 2002; Lee et al., 2006; Lapish et al.,
2008; Durstewitz et al., 2010), such that firing regimes beyond the
rheobase and close to depolarization block may not be very phys-
iological anyway (in fact, a common idea is that cortical neurons
in vivo reside in a balanced regime right below the spiking thresh-
old; van Vreeswijk and Sompolinsky, 1996; Destexhe et al., 2003;
Renart et al., 2006). Figure 5C in addition shows that the predic-
tion performance was also consistently high in layer-5 pyramidal
cells across a wider range of variances for mean currents below the
rheobase (µ < 25 pA).

Table 1 summarizes the parameter estimates for the sim-
pAdEx for pyramidal cells in layer 3 and 5, and for fast-spiking
interneurons.

3.2. OPTIMIZING SPIKE-TIME PREDICTION BY COMPENSATING
FIRING RATE VARIATIONS

Although, as shown in the previous section, in many cases the
simpAdEx model adjusted purely on the basis of constant-current-
step protocols performed quite well on the independent fluctu-
ating test sets, in other cases the model appeared to match the
empirical spike trains less well (Figure 6A). We noticed, however,
that these cases most often were not due to an inability of the model
to capture the empirical spike times per se. That is, whenever the
model and the real cell both elicited a spike around a particular
time, these were often precisely aligned (as Figure 6A illustrates).
Rather, the total number of spikes elicited by the model and real
cells deviated in these situations (the source of these deviations
will be investigated further below), and as a consequence of this
some of the spikes produced in one preparation (model or real
cell) had no counterpart in the other. Therefore, to examine to
which levels model performance could be pushed based on firing
rate information alone, a constant scaling factor s for the input I (t )
[see equation (20)] was introduced. This multiplicative factor was
determined solely by matching the total number of spikes within
the “recording periods” of our simple model and of the physio-
logical cells, that is without any other adjustments that would aim
to capture the precise spike times (other parameters of the model
could be scaled instead, e.g., EL, which comes down to adjusting an
additive constant). As exemplified in Figure 6A, compensating the
mismatch in model and empirical test trace firing rates by setting

the scaling factor suffices to bring the spike trains to almost per-
fect agreement. The gray bars and markers in Figure 5 summarize
the results across all data sets also studied in the previous section,
demonstrating that in general the introduction of a scaling fac-
tor based solely on firing rate information improves spike-time
predictions. With a scaling factor in place, Figure 5 also contains
average performance measures slightly above one [formally the
coincidence rate defined by equation (45) can indeed be greater
than 1; see Naud et al., 2011]. This indicates that adjusting the
scaling factor on the test traces may result in model – real cell
agreements which are higher than the agreement between differ-
ent repetitions from the same real neuron, as explored further
below. One may argue, of course, that our “test sets” in this case
are not true test sets anymore, as still information from these traces
(spike count) was used to adjust one of the model parameters. For
achieving a comparable level of spike-time prediction, however, it
is also sufficient to adjust the scaling factor just on an initial seg-
ment of the fluctuating trace, and then use the remaining trace as
a truly independent test set (example in Figure 6B). As Figure 6C
shows, the estimate for the scaling factor quickly converges after a
few dozen spikes. Consequently, if any information from fluctu-
ating traces may be harvested at all, prediction performance can
still be driven to very high levels on test set bits not used at all for
adapting model parameters (the conditions required in the INCF
contest proposed by Gerstner and Naud, 2009).

One potential factor that may contribute to the firing rate devi-
ations compensated by the scaling factor are the fluctuations that
naturally occur across different experimental repetitions of the
test trace in vitro. In fact, we observed that the firing rates dur-
ing different identical fluctuating test repetitions within the same
experimentally recorded cell systematically depend on the resting
potential right before the test set application [both overall positive
(<r>∼ 0.6, p < 5 · 10−32) and negative (<r>∼−0.56, p < 10−18)
correlations were observed; across all sets: <r2>∼ 0.43, p < 0.002
according to a permutation bootstrap test]. This suggests that the
scaling factor may partly compensate for experimental noise, that
is fluctuations in precise resting conditions (potentially associated
with variations in ionic milieu that occur across time) which cause
corresponding fluctuations in cell excitability and firing rates.
Indeed, not surprisingly, just like the empirical firing rates, the
magnitude of the scaling factor needed was significantly correlated
with the experimentally recorded resting potential just before test
set application (Figure 7A; <|r |>∼ 0.59, p < 10−20; <r2>∼ 0.43,
p < 0.002 according to permutation bootstraps). In our data sets
this source of experimental noise may have been particularly prob-
lematic because, as already noted above, we have mostly employed
lower SD (≤50 pA) for the fluctuating-current inputs than used in
most previous studies (≥150 pA; e.g., Clopath et al., 2007; Badel
et al., 2008b).

Hence, the impact of variations in resting conditions relative to
the voltage fluctuations caused by the stimulus may have been
higher than in many previous studies. This is also the reason
why we had to allow for somewhat broader time windows (10–
20 ms) for detecting spike coincidences than in many previous
studies (with time windows more in the range of 5–10 ms). To
investigate this issue of comparability with previous studies fur-
ther, four layer-5 PFC pyramidal cells were recorded using I inj SD
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FIGURE 6 | Illustration of spike prediction performance under various
conditions with and without scaling factor. (A) Example where test
set performance of the simpAdEx for a layer-5 pyramidal neuron (red;
<Γmod/Γcell>=−0.02) is significantly improved by including a scaling factor
(blue; <Γmod/Γcell>= 0.79). Original traces are given in black (σ=50 pA,
µ=25 pA). (B) Performance of the simpAdEx on a test set with a scaling
factor only adjusted on the first half of the fluctuating trace (not shown)

for a fast-spiking interneuron from rodent prefrontal cortex (σ=50 pA,
µ=50 pA). (C) The optimal scaling factor s as a function of the number of
spikes used to determine s. Six different test sets are shown in different
shades of gray for a layer-5 pyramidal neuron. (D) Test set performance of
the simpAdEx for a layer-5 pyramidal neuron (without scaling factor) under
high input variation modeled as an Ornstein–Uhlenbeck process
(σ=400 pA, µ=25 pA).

FIGURE 7 | Determinants and implications of the scaling factor in model
prediction performance. (A) The optimal scaling factor as a function of the
experimentally recorded resting potential for 4 example test sets (gray to
black shaded asterisks). Asterisks with she same shade of gray belong to
identical repetitions of the same stimulus. (B) The optimal scaling factor as a
function of the SD σ averaged across five layer-5 pyramidal cells (mean
current µ= 25 pA). K= slope of the linear fit. (C) P–P plot of the distributions

F of the firing rate agreement measure between model and neuron Πn,m

(without scaling factor) and the firing rate agreement measure between
different trials of the neuron Πn,n for a subset of the data (σ∈ {35,50},
µ≤ rheobase). The line F (Πn,n )=F (Πn,m ) is given in red. (D) P–P plot of the
distributions F of the model performance Γmod (with scaling factor) and the
cell reliability Γcell for a subset of the data (σ∈ {35,50}, µ≤ rheobase). The line
F (Γmod)=F (Γcell) is given in red.

ranging from 250 to 550 pA (cf. Badel et al., 2008a,b) and imple-
menting precisely the same type of random process (Ornstein–
Uhlenbeck process) as most frequently employed previously (cf.
Rauch et al., 2003; Clopath et al., 2007; Badel et al., 2008a). In

these cases, reasonable prediction performance (without includ-
ing or adjusting a scaling factor) was indeed achieved on the test
sets for a coincidence window of only 5 ms [Figure 6D; <Γ>= 0.6,
max(Γ)= 0.83].
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Another potential source of the firing rate deviations may be
that our training approach does not include any samples explic-
itly representing input variation, unlike fitting approaches directly
based on fluctuating traces. It is known that the spike rate of
neurons does not only depend on the mean input but as well
on its variance (Mainen and Sejnowski, 1995), with the result
that the shape and slope of f–I curves can change considerably
with the input (Chance et al., 2002; Rauch et al., 2003). Informa-
tion about variance-dependency of neural spiking is not explicitly
represented in our training set data, although it may come in
implicitly through the fact that both steady-state and transient
f–I information is used. To investigate the contribution of the
input variance in the test sets with mean currents less than the
rheobase, the required scaling factor was plotted as a function
of the input variance across empirical data sets (N = 5 cells)
for which a larger range of SD had been probed. As shown in
Figure 7B, the scaling factor is approximately linear in the SD
σ, with a relatively shallow slope (∼2 · 10−3/pA). Hence, at least
within the more physiological regime of below-rheobase mean
inputs, its dependence on the input variance seems not too high,
suggesting that at least part of the mechanisms accounting for
the variance-dependence of spike rates may have been implic-
itly captured by our training sets and intrinsic properties of the
model. Also note that this slope factor implies that for a range
of SD that may be considered physiological based on the in vivo
analysis preceding Section 3.1 (σI ∼ 25–50 pA), the scaling fac-
tor may vary by no more than ∼5% across this in vivo range (in
contrast to the variation caused by different resting conditions,
Figure 7A). The conclusion that input variance has a compara-
tively mild effect on model performance is further reinforced by
the observation that spike-time prediction performance itself does
not strongly depend on input variance [Figure 5C; if anything, it
tends to slightly increase with higher variance and no input scaling
(black markers)].

The analyses above demonstrated that spike-time prediction
could be further improved by just compensating for total spike
count differences between model and target traces through a scal-
ing factor, and have identified potential experimental sources for
the firing rate deviations. For an application of our model to in vivo
situations, a crucial question therefore is how severe or limiting
these firing rate deviations between model and empirical traces
actually are in relation to the physiological variation observed
under in vivo-like stimulation conditions (current σ≤ 50 pA,
µ < rheobase; without scaling factor, the overall agreement under
these conditions for cells with intrinsic reliability Γcell≥ 0.2 was
<Γ>∼ 0.73 for a coincidence window of 20 ms). We therefore
determined the agreement in firing rates (f) by

Πn,m = 1−
|fn − fm|

( fn + fm)
(47)

with “n” denoting neural and “m” model firing rates. This was
done for various repetitions of the same current input to the same
cell as recorded physiologically (Πn,n), and between the model
traces (without additional scaling) and the physiological record-
ings (Πn,m). As already noted in Section 3.1, model predictions
should be accepted as reasonably good if they lie within the range

of empirical variation, that is compared to the agreement between
different spike train repetitions from experimentally recorded cells
under exactly the same input conditions. To quantify this rela-
tion, the distribution of model-real cell firing rate agreements
Πn,m was compared to the distribution of real cell-real cell agree-
ments Πn,n using a percentile–percentile (P–P) plot (Figure 7C).
The P–P-graph places data points at coordinates corresponding
to the percentiles of the model-real cell (abscissa in Figure 7C)
and the real cell-real cell (ordinate in Figure 7C) distributions F
into which these points fall. If the two distributions were exactly
the same, the P–P plot would follow the line F(Πn,n)= F(Πn,m),
while it would range above it if model predictions were bet-
ter than empirical reliability and below it if they were worse.
The graph contains all test sets with mean currents µ below the
rheobase and SD σ∈ {35,50} pA. As Figure 7C (black dots) demon-
strates, the model-real cell distribution is well en par with the
real cell-real cell distribution, and – if anything – tends to actu-
ally range above it for the higher percentiles. This indicates that
the model-empirical firing rate agreements are at least as good
as the reliability among different identical-input-repetitions from
the same cell, i.e., almost optimal if set in relation to the empir-
ical variation. That the model firing rate agreements tend to be
actually slightly better than the experimental reliability might be
explained by the fact that the models are fit to f–I training sets
close in time to the corresponding test sets (relative to the temporal
spacing between different test sets). Therefore, they may already
account for some of the factors causing variation across differ-
ent experimental repetitions (across time; see above), and hence
perform even slightly better than expected from the empirical
variation.

We may also conjecture from these observations that explic-
itly adjusting an input scaling factor to precisely match empir-
ical and model trace spike counts could actually result in over-
fitting, that is adjusting the model toward part of the empir-
ical noise rather than capturing the true expectancy of the
empirical distribution. This is indeed confirmed by the P–P-
plot shown in Figure 7D, which illustrates that the distribution
F of spike-time agreements Γmod between the model including
a scaling factor and the real cells is actually shifted to consis-
tently higher values compared to the distribution between dif-
ferent repetitions of the same fluctuating stimulus within the
same cell (Γcell). That is, for any level of agreement between
two spike trains there are more model-real cell coincidence
rates ranging above that level than real cell-real cell coinci-
dence rates, indicating that the model with scaling factor per-
forms better than would be expected from the experimental
distribution.

In conclusion, the simpAdEx model adapted solely based on
conventional step protocols performs well in in vivo-like test
situations within the bounds of physiological reliability. Inclu-
sion of the scaling factor demonstrates to which levels of precise
spike-time performance the simple model could theoretically be
stretched relying only on firing rate information for training (plus
sub-rheobase I –V curve). However, given that it may also lead
to over-fitting, for practical application of the model to in vivo
network situations inclusion of this additional parameter is not
advisable.
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FIGURE 8 | Comparison of the simplified AdEx (simpAdEx) with
the adaptive LIF neuron (aLIF) and the full AdEx. The onset and
steady-state f –I curves and the test set consisting of a voltage trace
upon a fluctuating input current for a fast-spiking interneuron from the
rodent prefrontal cortex are given in black. The corresponding model
fits [(A) aLIF, (B) simpAdEx, and (C) AdEx] are given in red (steady-state
f-I curve) and blue (onset f –I curve). (D) The raw coincidence rate Γ for

a window ∆=20 ms for 170 evaluated test sets from 39 cells (layer-3
and -5 pyramidal cells, fast spiking and bitufted interneurons) for aLIF
and simpAdEx. Black dots= σ∈ {35,50}, red dots= σ∈ {100,
150,200,250}. (E) Raw Γ for a window ∆=20 ms for 12 evaluated test
sets of 5 cells (seeTable 2) for AdEx and simpAdEx. A scaling factor
for eliminating firing rate differences was included in all model
comparisons (see text).

3.3. COMPARISON TO THE ADAPTIVE LIF MODEL AND THE FULL AdEx
The basic LIF model enjoys great popularity when it comes to
larger-scale network simulations due to its mathematical simplic-
ity and computational efficiency. In Materials and Methods we
derived (exact) closed-form expressions for the onset and steady-
state firing rates of the adaptive LIF model, that is the basic LIF
model enhanced by a second linear differential equation imple-
menting a spike-rate adaptation process (see Materials and Meth-
ods: 2.2.2 and 2.2.3). The parameters of the model are tuned by the
same fitting algorithm on training sets consisting of f–I and I –V
curves as used for the simpAdEx (see Materials and Methods: 2.3).
To minimize the effect of experimental noise and enhance com-
parability between models, potential mismatches in spike counts
between model and target traces were largely eliminated through
input scaling as introduced in the previous section. This way the
adaptive LIF was adjusted for a subset of 39 different real cells, and
its performance on the corresponding fluctuating-current test sets
was compared with the one from the simpAdEx. Figure 8 gives
the training and test result for an example of a physiological cell.
The aLIF like the simpAdEx can be seen to reproduce spike times
with high accuracy, although the aLIF clearly does not capture
the subthreshold dynamics as well. Figure 8D shows the (non-
normalized) spike coincidence rates (gamma factors) for the aLIF

versus simpAdEx models for different test sets. Despite the further
simplification in the aLIF model, its spike prediction performance,
once firing rate differences were eliminated, is comparable to the
simpAdEx for small SD (black dots), while for higher input vari-
ance (red dots) the coincidence rates are below those from the
simpAdEx.

The development of the approximation to the full AdEx was
motivated by the closed-form expressions that could be derived
for the training set, and the much faster fitting procedure implied
by this (see Materials and Methods). The considerable speed-up
in fitting times is verified in Table 2 which summarizes for five dif-
ferent physiological neurons the computer time needed to fit the
three training set curves for the full AdEx with (a 6= 0) and with-
out (a= 0) subthreshold adaptation, and for the simpAdEx. The
parameters of the full AdEx are tuned by the same fitting algorithm
used for the simpAdEx (see Materials and Methods: 2.3), only that
numerical integration of the differential equations was required
for the full AdEx due to the lack of closed-form f–I expressions.
These data evidence speed-ups of 1–2 orders of magnitude, as
noted in previous sections. In terms of spike-time prediction, the
comparison of (non-normalized) coincidence rates for 12 test sets
from 5 cells is given in Figure 8E (again with input scaling present
to eliminate firing rate deviations as a contributing factor), and a
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specific example of training and test set fit is shown in Figure 8C.
On average, the performance does not seem to increase by using
the full instead of the simplified AdEx.

4. DISCUSSION
For the purpose of large-scale neuronal network simulations
(Traub et al., 1988, 2005; Markram et al., 2004; Markram, 2006;
Wang et al., 2006; Izhikevich and Edelman, 2008; Lansner, 2009),
single neuron models which do not compromise physiological
realism too much and capture some of the tremendous cellular het-
erogeneity observed in real cortical tissue are of increasing interest.
Here we introduced a novel approach for fitting a simple 2-ODE
neuron model to experimental data with good prediction perfor-
mance on distinct test sets not employed for fitting (Section 3.1).
Our approach had several important objectives: (1) We wanted the
fitting procedure to be fast (cf. Table 2) and completely autom-
atized (see Materials and Methods), so that large pools of neural
recordings could easily be translated into single-cell models; (2)
we only wanted to rely on simple standard electrophysiological
protocols for this process, i.e., f–I and I –V curves, which are
widely available and routinely obtained; (3) the training set for
model fitting should assess a wide range of firing rates (as rate
changes are still the most prominent responses correlated with
behavior observed in vivo); (4) the models should exhibit sat-
isfactory prediction performance on physiological recording sets
distinct from the ones used for training, in this case spike responses
upon fluctuating “in vivo-like” current injections.

Toward these goals,we developed an approximation to the AdEx
model from which closed-form expressions for initial and steady-
state f–I curves could be derived. For the AdEx model, originally
introduced by Brette and Gerstner (2005), it has been shown previ-
ously that it can reproduce a variety of spiking patterns observed in
diverse cell types (Naud et al., 2008), thus forming a good starting
point for our own analysis. Our approximation to the AdEx was
based on separation of time scales and phase plane considerations.
Since we do not have to solve for the full model trajectory up to
a steady-state by numerical integration but can directly calculate
the f–I curves from closed-form expressions, the fitting procedure
is sped up by about two orders of magnitude (cf. Table 2). This
allows to construct large sets of model neurons from empirical data
sets conveniently and quickly. Based on our analytical approxima-
tion, one can also easily find closed-form expressions for, e.g., the
latency to the first spike or the number of spikes in response to a
step current.

Table 2 | Comparison of computation time requirements for the full

and simplified AdEx.

Cell type,

species

t/min

AdEx (a = 0)

t/min

AdEx (a 6= 0)

t/min

simpAdEx

L5, rat 332 900 12

L3, mouse 248 850 7

FS, mouse 215 370 3

L5, mouse 305 860 6

L5, mouse 400 778 13

There are, of course, also other approaches to fast model fit-
ting. Progress in global optimization techniques and computer
hardware substantially decreased the temporal requirements for
fitting models to experimental data (Brette et al., 2007). Evolution-
ary techniques (Bäck and Schwefel, 1993) like genetic algorithms,
differential evolution and related methods, or particle swarm
algorithms (Eberhart and Shi, 1998), enable fast optimization of
multi-dimensional systems by efficient parallelization, in partic-
ular through the use of graphics processing units (GPU; Owens
et al., 2007; Rossant et al., 2010). Other algorithmic solutions like
implementations based on vectorization, that is replacing mul-
tiple repeated operations by single operations on vectors, can
make optimization processes more efficient (Brette and Good-
man, 2011). For instance, in one such recent approach (Rossant
et al., 2011) 50–80-fold speed improvements were found combin-
ing vectorization techniques and parallelization on 240 GPU cores
when compared to run times on a single GPU. Most of these algo-
rithmic and hardware approaches may also be harvested for our
model, however, to further speed-up the process if many different
cell types are to be fitted at once. The advantage of our approach
lies primarily in alleviating the need for explicitly simulating the
system of differential equations. The optimization function equa-
tion (44) may then still be subjected to evolutionary, swarm, or
vectorization techniques, or different model cells from a larger
data set may be optimized in parallel on different CPUs/GPUs.

Our AdEx approximation can still reproduce most of the spik-
ing patterns of the original AdEx, and thus many of the patterns
observed in real neurons. As an even simpler alternative, we also
considered an adaptive LIF model for which we derived exact
closed-form expressions for the onset and steady-state firing rates.
Both models could be easily fit to near perfection to the initial
and steady-state f–I curves of recordings from real pyramidal and
interneurons from various layers of the rodent prefrontal cortex.
The simpAdEx model on top captured sub-rheobase I –V curves
very well.

4.1. NATURE OF THE TRAINING SET: LIMITATIONS AND EXTENSIONS
The major advantages of the training set used for our modeling
approach is its simplicity and easy availability, and, of course, the
fact that it allows for the fast fitting procedure based on closed-
form expressions. In contrast, for the purpose of model fitting
and evaluation, most previous studies have employed fluctuat-
ing currents designed to reflect the synaptic bombardment by
populations of excitatory and inhibitory presynaptic cells (Jolivet
et al., 2006, 2008; Clopath et al., 2007; Badel et al., 2008a,b; Naud
et al., 2008; Gerstner and Naud, 2009). Unlike fitting procedures
working on such fluctuating current/voltage traces, our training
set probes none of the higher-order statistical properties (at least
not explicitly, see above) that may characterize in vivo activity. In
this sense it is more removed from the in vivo scenario to which
the model is ultimately to be applied to, than training sets used
in previous approaches. However, it may be important to note
that the construction of in vivo-like fluctuating training or test
sets rests on many assumptions about synaptic dynamics, ampli-
tudes and time constants, input rates, correlations among inputs,
frequency content, and so on. Prediction quality on real in vivo sit-
uations is likely to depend on how well these assumptions are met,
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and like it is generally true in statistics (e.g., Hastie et al., 2009),
one may sometimes be better off using simpler methods mak-
ing less assumptions. Furthermore, due to the time constraints
imposed by in vitro methods (limited life time and intracellu-
lar integrity/composition of the cells), only a limited parameter
range can be probed by any training protocol for a given cell, such
that results could be biased toward the specific parameter regime
explored. For instance, while our training protocol contains a large
range of mean-input currents and thus spike output rates a neuron
may traverse in vivo, up to the point of depolarization block, this
was not always the case in all of the previous approaches based on
fluctuating inputs. For these reasons, it may not be per se clear that
any fitting procedure based on fluctuating input currents would
also automatically transfer better to an in vivo situation. This is
not to say that a training protocol working with step-like inputs
is actually to be preferred, but just to caution that generalization
performance will likely depend on the details of the implemen-
tation of the fluctuating inputs and the parameter range probed.
Ideally, of course, the better an approximation one can get to the
in vivo situation, and the more data sets for covering the “in vivo
space” one has, the better this would be for training a model.

One other issue that deserves discussion in this context is the
similarity between training and test sets, and the fitting criterion
used. If both training and test data consist of noisy voltage traces
which in addition may be generated from similar underlying dis-
tributions, then while test set prediction performance should be
better than if dissimilar training data were used, generalization to
completely different scenarios may be worse (see also discussion on
within- vs. out-of-sample predictions in, e.g., Hastie et al., 2009).
This may be exaggerated if the fitting criterion explicitly includes
the specific quantities to be predicted, i.e., the precise spike timing
in the present case (for instance, some fitting criteria that have
been in use directly included the spike-time agreement measure Γ

as a term). Our approach uses training and test sets which are very
distinct: On the training side, we used subthreshold I –V and onset
and steady-state f–I curves based on step-like inputs, while the test
sets consisted of fluctuating in vivo-like current inputs of differ-
ent means and SD. The fitting criterion based on the I –V and f–I
curves also did not involve any spike-time information (the target
of prediction). In this sense we feel that our test sets impose a quite
strong generalization test on the model. However, this discussion
may boil down to the same issues already brought up above: If
much knowledge about the ultimate application domain is avail-
able and can be integrated into the training sets, then it should
certainly be used, and fitting criteria that actually emphasize those
aspects on which high prediction performance is sought, may be
preferred. In this sense this discussion is less a critique of the vari-
ous fitting approaches (including ours), but more to propose this
whole subject as important for more detailed future research.

As noted above, our training set composed of steady-state and
transient f–I curves does not directly assess higher-order statisti-
cal properties of the input. With regards to the input variance, one
simple potential extension is to augment the set of constant hyper-
polarizing and depolarizing current steps with step-like positive or
negative excursions from any given level of injected current. Such
an approach may allow to assess in more detail how a cell responds
to transient mild or larger deflections from any mean-input level

(i.e., to variations of different size). At the same time it still largely
retains the simplicity of experimental protocols consisting only
of current-clamp steps and thus also retains the possibility to
fully specify the model by using only steady-state and transient
f–I curves, an important feature of the fitting procedure intro-
duced here. Within the limits of the resolution required to obtain
estimates of the instantaneous firing rate (at least one interspike
interval), the frequency of these step-like changes may also be var-
ied to assess some of the frequency-dependent aspects of the neural
response while still enabling model specification via f–I curves.

4.2. PREDICTION PERFORMANCE, INPUT REGIMES, AND FIRING RATE
VARIATIONS

To assess the predictive power of our modeling approach, a large
set of data from purpose-generated electrophysiological record-
ings from different cell types and cortical layers (L3, L5, and
L6) was analyzed. Prediction performance was formally evalu-
ated using two measures (coincidence rate and Victor–Purpura
measure) which quantify the accuracy in predicting spike times
within the test sets (our results, however, did not strongly depend
on the employed performance measure or its parameter settings).
Since previous fitting procedures with reduced models most often
used fluctuating input stimuli both for the training and the testing
(see Section 4.1), and furthermore often optimized the coinci-
dence rate directly (e.g., Clopath et al., 2007), it seems natural that
they should have an edge compared to our approach in predicting
precise spike times within the test traces. However, prediction per-
formance in our model (Section 3.1) seems quite en par with levels
reported previously for different sets of probed input conditions
(compare, for instance, to the two-compartment model based on
the AdEx presented in Clopath et al., 2007, or the refractory expo-
nential IF model in Badel et al., 2008a,b), and could be improved
further by introducing a constant scaling factor for the current
input into the voltage equation of the simpAdEx model (Section
3.2), adjusted to level the total spike counts in the model and refer-
ence traces. Allowing further adjustment through this single scalar
scaling factor led to often almost perfect agreement of spike trains,
although it was tuned solely to match the total number of spikes
in the model and target traces, that is without using detailed spike
time or voltage information. It was also sufficient to use only a
portion of the fluctuating test traces for adapting this parameter
(cf. Figures 6B,C), leaving the remainder of the fluctuating voltage
trace as a truly independent test set. However, we found that the
scaling factor may actually harm generalization performance, as it
leads to over-fitting (Figure 7D), and for most practical purposes
(in vivo scenarios) should therefore not be included in the model,
as further discussed below.

Nevertheless the results surrounding the scaling factor high-
light a number of interesting and important points about model
fitting, dynamics, and empirical noise. First, it is interesting to
note that in any step of the model fitting approach, including
adjustment of the scaling factor, only firing rate (plus sub-rheobase
I –V ) information has been used, yet the model is able to predict
quite accurately precise spike times for a whole range of differ-
ent input scenarios. This suggests that, for the situations tested,
the underlying spike-generating dynamics of complex real neu-
rons was properly captured by our simple 2-ODE model. More
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importantly, it indicates that – once basic dynamical properties
are captured – all the information about spike times is already
contained in the firing rates (and possibly vice versa), potentially
shedding some new light on the relation between firing rate and
precise spike-time codes (Shadlen and Newsome, 1994; Gütig and
Sompolinsky, 2006; London et al., 2010). Second, these analyses
revealed factors from where model – real cell differences may come
from. One idea was that firing rate deviations could potentially
arise from the fact that neural spiking rates do not just depend on
the mean but also on the variance in the input current (Mainen
and Sejnowski, 1995; Chance et al., 2002; Rauch et al., 2003). Our
training set does not explicitly contain voltage traces of differ-
ent variance. However, it was found that at least below the spiking
threshold, presumably the regime in which neurons operate in vivo
(Destexhe et al., 2003; Renart et al., 2006), the scaling factor did
not change too much (with a slope of ∼2× 10−3/pA) across a
large range of input variances (cf. Figure 7B), nor did spike pre-
diction performance itself (Figure 5C). Potentially this is because
at least part of the relevant information is still available to the
fitting process through the transient f–I curves. Neocortical neu-
rons in vivo have indeed been proposed to live in a subthreshold
balanced regime where spiking is caused by occasional threshold
crossings (van Vreeswijk and Sompolinsky, 1996; Destexhe et al.,
2003; Renart et al., 2006), an idea consistent with the relatively low
firing rates of neocortical neurons in vivo (Margrie et al., 2002; Lee
et al., 2006; Lapish et al., 2008; Durstewitz et al., 2010).

Another idea was that model – real cell firing rate deviations
may in part simply reflect empirical noise, that is firing rate fluc-
tuations that naturally occur across different identical repetitions
of the same stimulus conditions in the recorded neurons (Mainen
and Sejnowski, 1995). Indeed, firing rates recorded for identical
stimulus applications significantly co-varied with fluctuations in
the cellular resting potential preceding the application, and so did
the scaling factor (cf. Figure 7A). This problem may be exagger-
ated with larger temporal gaps between the training and test sets
(as in the present study, ∼5 min on average), as during longer
time periods the precise physiological conditions during test set
application may be more likely to have drifted away from those
during training set application. It may also be more of a problem
in slice preparations from adult animals as compared to the much
more widely used juvenile preparations. Adult slices exhibit richer
intrinsic activity and less stability than juvenile slices (e.g., Tseng
and O’Donnell, 2005). In contrast, it should be less of a problem
if the variations in the input are large (e.g., σ= 250–550 pA, as in
Figure 6D). Thus, fluctuations in physiological background condi-
tions and the signal/noise-ratio are factors that influence the model
fitting process (see also below). These results may also have impli-
cations for neural processing in vivo: Either synaptic events have to
be of sufficiently large amplitude to overcome background fluctu-
ations and cause reliable spike timing (see London et al., 2010), or
variations in background conditions need to be sufficiently com-
mon to the neurons supposed to communicate via precise spike
times (a condition that in the model – real cell comparisons could
be installed through the scaling factor).

The physiological noise also limits the degree to which spike
times from one stimulus presentation can be predicted from
another identical stimulus repetition in the same cell. As the model

cannot be expected to perform better than the real cells, the sta-
tistical distributions of the empirical firing rate reliabilities (i.e.,
spike-rate agreements across different repetitions) and the model-
real cell spike-rate agreements were first compared. For test sets
with SD up to 50 pA (the in vivo range, see Section 3), this com-
parison revealed that the model’s firing rate accuracy was perfectly
within the bounds of empirical variation (cf. Figure 7C). This
means that inclusion of a scaling factor in the model on average
does not truly improve the model – real cell fit beyond the degree
of spike-rate agreement to be reasonably expected from the exper-
imental variability. This in turn suggests that the scaling factor
may in fact partly fit the empirical noise (i.e., lead to over-fitting
of particular test traces), as was confirmed when the distributions
of cell-cell and model-cell spike coincidence rates were compared:
With the scaling factor in place, the model outperformed the real
cells, that is led to spike coincidence levels that were consistently
higher than those between different repetitions from the same
cell (cf. Figure 7D). Thus, the scaling factor demonstrates the
spike-time prediction power that can be achieved while exploit-
ing only rate (plus sub-rheobase I –V ) information as a source for
model fitting. But the actual recommendation to be derived from
this analysis is that none such additional parameter adjustment
should be performed for application of the model to in vivo-like
situations.

Finally, we would like to comment on the time windows used
to evaluate spike coincidences (Γ) for most part in the present
study. We have reported results for both 10 ms, which is within
the range of 5–10 ms employed by most previous studies (Badel
et al., 2008a,b; Jolivet et al., 2008), and 20 ms. The choice of the
larger window of 20 ms was motivated by the fact that in most
of our cells we had used lower SD for the fluctuating currents
(≤50 pA) than most commonly used previously (≥150 pA; Jolivet
et al., 2006, 2008; Clopath et al., 2007; Badel et al., 2008a,b; Naud
et al., 2008; Gerstner and Naud, 2009). These lower SD, in turn,
were adopted because they provoked voltage fluctuations most
compatible with the range observed in vivo for our preparation
(adult rodent prefrontal cortex; see Section 3). In ours as in pre-
vious studies (Mainen and Sejnowski, 1995; Chance et al., 2002;
Rauch et al., 2003), cells become less reliable in their spiking pat-
terns as the input variance decreases, which in turn makes the
choice of larger time windows more reasonable (ultimately, it is of
course the voltage variance most relevant here, but for a given set of
cellular parameters this will be highly correlated with the current
variance). When we used very high current variances for the input
(250–550 pA, as, e.g., in Badel et al., 2008a,b) and the same type
of random process for generating the fluctuations as used by oth-
ers before (Ornstein–Uhlenbeck process; e.g., Rauch et al., 2003;
Clopath et al., 2007; Badel et al., 2008a), spike coincidence levels
between model and real cells approaching those reported previ-
ously (e.g., <Γ>= 0.6 as in Clopath et al., 2007) were obtained
(without scaling factor) also for smaller time windows (5 ms). It
may also be important to note that larger time windows do not
necessarily imply higher coincidence rates: In Jolivet et al. (2008),
for instance, the coincidence rate Γ was shown to be approximately
constant for coincidence windows ∆∈ [2 ms, 12 ms], and decayed
for both smaller and larger time windows. Finally, it should be
noted that different studies have employed different recording
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protocols, different parameter settings for generating current fluc-
tuations, and different physiological preparations and cell types,
which may limit comparability among studies (even when intrinsic
cell reliability is used for normalization).

4.3. SUBTHRESHOLD MEMBRANE DYNAMICS, COMPARISON
BETWEEN MODELS AND POSSIBLE EXTENSIONS

The main goal of our study was to develop a simplified neuron
model which, when adjusted based on standard in vitro protocols,
captures the spiking behavior (rate and timing) of real cells, as
these are the quantities which represent the ultimate read-out of a
neuron’s information processing accessible to other neurons, and
are the quantities usually reported in in vivo studies. We observed,
however, that on average the adapted simpAdEx model would
also reproduce the subthreshold membrane voltage quite well (see
insets in Figure 4). For prefrontal pyramidal cells, correlations
with the membrane potential in the subthreshold regime were on
average <r>∼ 0.58 (and increased to 0.65 with input scaling), just
slightly below the range of cross-correlations observed between
different repetitions of the same stimulus in vitro, <r>∼ 0.75. The
main deviations from the voltage trajectory of real cells seemed
to occur right after a spike where the model cells sometimes
produced a considerable after-hyperpolarization while the real
neurons often returned to a potential not far below the pre-spike
level. This is to be expected, as the model cells have an artifi-
cial reset process and lack the ionic mechanisms (Na+-channel
inactivation, diverse Ca2+- and K+-channels) that drive spike-
after-polarizations in vitro. Note that this balance of ionic currents
in the direct aftermath of a spike is not captured by the subthresh-
old I –V curves used for model fitting. This mismatch in after-spike
voltage behavior has been described by others before for this class
of simple models (e.g., Clopath et al., 2007; Badel et al., 2008b),
and it may also be the reason why the subthreshold voltage cor-
relations with interneurons [<r>∼ 0.27 (0.3 with input scaling),
compared to a correlation of 0.75 among repetitions] are consid-
erably worse than those for pyramidal cells (see above). Especially
for fast-spiking interneurons the subthreshold voltage trajectory
is dominated to a large degree by the post-spike polarizations
which are not properly captured by the model. We emphasize that
strongly reduced models like the present which are mainly adapted
to capture the spiking behavior of real cells may not necessarily also
exhibit good fits to the subthreshold membrane behavior (as actu-
ally evidenced by the aLIF example in Figure 8A). In some cases,
they may even have to compromise voltage dynamics to achieve
a good approximation to the spiking behavior. For spiking, the
dynamics of the membrane voltage in the vicinity of (or approach
toward) the threshold is most crucial. If the voltage dynamics is of
primary interest, biophysically more detailed models may often be
better suited, although we note that recently simple models have
been advanced that also capture post-spike voltage behavior very
well (Badel et al., 2008a,b; Rossant et al., 2010).

For several data sets, we have compared performance of the
aLIF, the simpAdEx, and the full AdEx models (cf. Figures 8D,E).
The aLIF is the simplest type of model that would allow rea-
sonable fitting to our training data, as an adaptation term is
essential for simultaneously matching the transient as well as
the steady-state f–I curves. With a scaling factor allowed, the

level of spike-time agreement (Γ) with the experimental cells
was comparable for all three types of reduced models. However,
experimentally recorded I –V curves often significantly deviated
from linearity as the membrane potential approached the spiking
threshold. Since the aLIF model is strictly linear in its current-
voltage-relationship below threshold, it is not able to capture this
experimentally observed departure from linearity. Likely for this
reason, its agreement with the subthreshold membrane dynamics
was often substantially worse than that of the simpAdEx model
(compare Figures 8A,B). The fitting process for the aLIF model
also often resulted in rather unphysiological parameter estimates
(for instance, Vr <−150 mV), probably to compensate for the
mismatch in the subthreshold voltage dynamics when reproduc-
ing the spiking behavior. Thus the aLIF model (with scaling factor)
does a reasonably good job in reproducing empirical firing rates
and spike times, but the addition of an exponential term to the
voltage equation seems to substantially improve the physiological
validity of the model with regards to the membrane dynamics.
Comparing the simpAdEx and the full AdEx model, the constraint
that adaptation in the simpAdEx is solely driven by the reset since
a= 0 may present a limitation for fitting physiological data in
which subthreshold adaptation currents, like Iks (Hammond and
Crépel, 1992), play a prominent role. However, in practice, it was
often taken to be zero because it proved to be difficult or impossible
to extract a reasonable value from electrophysiological recordings
(Clopath et al., 2007). In general, it is important to keep in mind
that all the models discussed here represent massive reductions of
a much more complex physiological reality. Many if not most of
the parameters in such models will therefore inevitably ultimately
represent lumped contributions of different ionic sources or spa-
tial factors. In this sense, in most cases there will be no 1:1 mapping
on biophysical parameters of a real cell.

More generally, of course, as with every highly simplified neu-
ron model, ours also ignores the spatial (dendritic) structure of
real cells. One potential extension may be to add dendritic trans-
fer/filter functions to the model which allow to fit f–I curves
generated from distal current inputs at the same time as the somat-
ically induced f–I traces (see also Clopath et al., 2007). One could
potentially maintain the closed-form tractability of the model in
this scenario by first fitting f–I curves from different dendritic
injection sites separately, and then combining them into the same
model by optimizing parameters of the transfer functions. One
other obvious limitation already pointed out is that the model
is not able to capture phenomena resulting from the progressive
inactivation of Na+ channels at higher potentials like the depolar-
ization block. Neither the approximation to the AdEx nor the AdEx
itself are able to capture the sudden decrease or non-monotonicity
in firing rates as the driving current becomes very high, since they
lack a bifurcation from the stable limit cycle associated with peri-
odic spiking to a stable fixed point (in contrast to other simple
neuron models, e.g., Izhikevich, 2007; Durstewitz, 2009). The phe-
nomenon of depolarization block itself may simply be captured
by introducing a current threshold beyond which spiking is shut
off, but of course this would not capture more subtle changes in
the neuron’s behavior resulting from progressive inactivation of
inward currents. However, as already discussed above, extensions
of the model along this direction may be less relevant if the main
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goal is to capture network-dynamical regimes that are presumably
characteristic of awake in vivo scenarios (balanced state).

To conclude, we derived an approximation to the AdEx
model which allows for fast fitting to physiological data while
retaining most of the dynamical features of the original model.
Our model fitting approach relies entirely on f–I and I –
V curves as obtained routinely in standard electrophysiologi-
cal protocols, yet the resulting models predict reasonably well
spike times and behavior obtained with in vivo-like fluctuating-
current inputs not used for model fitting. Thus this approach
may allow to efficiently and automatically translate, in a kind
of “high-throughput” fashion, larger data bases of single-cell
recordings into a computational framework. It can be used to

construct networks of in this sense physiologically validated model
cells which are still computationally efficient and analytically
tractable.
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